

SOPRON

Development of a Satellite based Forest Monitoring System Kornél Czimber

FACULTY OF FORESTRY

Content

- Problem
- Goals
- Method
- Web map
- Sequel

Forest Damage Monitoring

- Satellite remote sensing is excellent + terrestrial reference
- Multiple systems in operation (ForWarn, GlobalForestWatch)
 Even in Hungary (TEMRE, FIR)
- Various sensors (MODIS, Landsat, Sentinel-2)
- Proven method: Vegetation index changes
- Various implementations
 - Simple difference
 - Standardization

Vegetation index - temporality

Vegetation index - temporality

Vegetation index - spatiality (ForWarn)

Biotic damage

Forest fire

Problem

- Severe drought in 2022, NDVI drop of nearly 0.5
- Differential-based methods do not work
 - Current previous month/year average, large difference
 - Two or more drought years shift the average
- Normalization-based procedures do not work
 - (Current average of previous years) / Standard deviation of previous years
 - Alternating drought-normal years take away the deviation
- Is there a solution?

Development Objectives

- Be a web system, serve multiple users
- Be manageable by forestry professionals
 - They don't like complicated systems
 - They don't like infrared images
- Can handle normal and drought years
- Introduce a single metric for forest damage
- Detect patches and patterns
- Recognize problems that begin

NDVI of August 2021.

NDVI of August 2022.

Introducing Double Difference

- Need a robust statistical estimator (median, percentile)
- Relate to the 75 percentile of forests in each period
- Compose a new index, a double difference:

 $Diff = (NDVI_{act} - NDVI_{act, perc75}) - (NDVI_{prev} - NDVI_{prev, perc75})$

0.3

Double Difference

Double Difference (closer look, Lowlands)

Double Difference (closer look, Highlands)

Clouds

 Clouds and their shadows are problematic, it generates false detections

Clouds

 Maximum likelihood based cloud and shadow detection for masking

Detection

- One or two metrics are required for forest sub-compartments
 - Pixels ratio, where -0.1...-0.2 is the double difference
 - Pixels with a double difference of less than -0.2
 - Values can be transferred to the professional forestry system
- It is necessary to recognize plots (vector point layer for GIS)
 - Plot appearance of forest damage
 - Definition of plot size: 3, 5, 7
 - Adaptive 5x5 filter, minimum threshold and sum threshold introduced

Implementation and workflow

- Download Sentinel-2 image tiles
- Process JPEG2000 images directly
- Algorithmic image processing (topoXmap)
- Output image results, tiling
- Plot Detection, metrics for forest compartments

Web Application Development

- Periods, on average 1 good (cloudless) image per month
- Display of Current and previous years NDVI
- Display of Double difference
- Display of False Color image
- Fast system, lots of imagery, should run on mobile
- Geoserver independent solution development

Web application

- Login
- Forest maps
- Images
- Background maps
- Search
- Measurement
- GNSS position

False color image, greens are forests

Linear Color Space Transformation

Results

- Development of novel method, algorithms and processing
- Web application development, publication of results via Internet
- Field feedback (from TAEG Zrt.), system use
 - Many detected damage plots validated
 - One important example: August footage showed a damaged plot: that plot of scotch pine dried up in spring
 - Not all stocks marked in red showed forest damage, but it shows the stress

Sequel

- Processing several periods including winter months
- Comparison with logging data (false alarm)
- Recognition of types of damage, based on measure and spatial pattern
 - Theft of wood
 - Drought damage
 - Storm damage
 - Insect damage
 - Complex damage (predisposing, provoking)

Thank You for the Attention Kornél Czimber

FACULTY OF FORESTRY

